Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 178: 196-207, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428511

RESUMO

Articular cartilage's remarkable low-friction properties are essential to joint function. In osteoarthritis (OA), cartilage degeneration (e.g., proteoglycan loss and collagen damage) decreases tissue modulus and increases permeability. Although these changes impair lubrication in fully depressurized and slowly slid cartilage, new evidence suggests such relationships may not hold under biofidelic sliding conditions more representative of those encountered in vivo. Our recent studies using the convergent stationary contact area (cSCA) configuration demonstrate that articulation (i.e., sliding) generates interfacial hydrodynamic pressures capable of replenishing cartilage interstitial fluid/pressure lost to compressive loading through a mechanism termed tribological rehydration. This fluid recovery sustains in vivo-like kinetic friction coefficients (µk<0.02 in PBS and <0.005 in synovial fluid) with little sensitivity to mechanical properties in healthy tissue. However, the tribomechanical function of compromised cartilage under biofidelic sliding conditions remains unknown. Here, we investigated the effects of OA-like changes in cartilage mechanical properties, modeled via enzymatic digestion of mature bovine cartilage, on its tribomechanical function during cSCA sliding. We found no differences in sliding-driven tribological rehydration behaviors or µk between naïve and digested cSCA cartilage (in PBS or synovial fluid). This suggests that OA-like cartilage retains sufficient functional properties to support naïve-like fluid recovery and lubrication under biofidelic sliding conditions. However, OA-like cartilage accumulated greater total tissue strains due to elevated strain accrual during initial load application. Together, these results suggest that elevated total tissue strains-as opposed to activity-mediated strains or friction-driven wear-might be the key biomechanical mediator of OA pathology in cartilage. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) decreases cartilage's modulus and increases its permeability. While these changes compromise frictional performance in benchtop testing under low fluid load support (FLS) conditions, whether such observations hold under sliding conditions that better represent the joints' dynamic FLS conditions in vivo is unclear. Here, we leveraged biofidelic benchtop sliding experiments-that is, those mimicking joints' native sliding environment-to examine how OA-like changes in mechanical properties effect cartilage's natural lubrication. We found no differences in sliding-mediated fluid recovery or kinetic friction behaviors between naïve and OA-like cartilage. However, OA-like cartilage experienced greater strain accumulation during load application, suggesting that elevated tissue strains (not friction-driven wear) may be the primary biomechanical mediator of OA pathology.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Bovinos , Lubrificação , Estresse Mecânico , Líquido Sinovial , Osteoartrite/terapia , Fricção , Digestão
2.
J Biomech Eng ; 146(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323667

RESUMO

Healthy articular cartilage is a remarkable bearing material optimized for near-frictionless joint articulation. Because its limited self-repair capacity renders it susceptible to osteoarthritis (OA), approaches to reinforce or rebuild degenerative cartilage are of significant interest. While exogenous collagen crosslinking (CXL) treatments improve cartilage's mechanical properties and increase its resistance to enzymatic degradation, their effects on cartilage lubrication remain less clear. Here, we examined how the collagen crosslinking agents genipin (GP) and glutaraldehyde (GTA) impact cartilage lubrication using the convergent stationary contact area (cSCA) configuration. Unlike classical configurations, the cSCA sustains biofidelic kinetic friction coefficients (µk) via superposition of interstitial and hydrodynamic pressurization (i.e., tribological rehydration). As expected, glutaraldehyde- and genipin-mediated CXL increased cartilage's tensile and compressive moduli. Although net tribological rehydration was retained after CXL, GP or GTA treatment drastically elevated µk. Both healthy and "OA-like" cartilage (generated via enzymatic digestion) sustained remarkably low µk in saline- (≤0.02) and synovial fluid-lubricated contacts (≤0.006). After CXL, µk increased up to 30-fold, reaching values associated with marked chondrocyte death in vitro. These results demonstrate that mechanical properties (i.e., stiffness) are necessary, but not sufficient, metrics of cartilage function. Furthermore, the marked impairment in lubrication suggests that CXL-mediated stiffening is ill-suited to cartilage preservation or joint resurfacing.


Assuntos
Cartilagem Articular , Iridoides , Osteoartrite , Humanos , Lubrificação , Glutaral , Colágeno , Osteoartrite/tratamento farmacológico , Fricção , Estresse Mecânico
3.
Adv Healthc Mater ; 12(29): e2301701, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37530909

RESUMO

Toward the goal of establishing an engineered model of the vocal fold lamina propria (LP), mesenchymal stem cells (MSCs) are encapsulated in hyaluronic acid (HA)-based hydrogels employing tetrazine ligation with strained alkenes. To mimic matrix stiffening during LP maturation, diffusion-controlled interfacial bioorthogonal crosslinking is carried out on the soft cellular construct using HA modified with a ferocious dienophile, trans-cyclooctene (TCO). Cultures are maintained in MSC growth media for 14 days to afford a model of a newborn LP that is homogeneously soft (nLP), a homogeneously stiffened construct zero (sLP0) or 7 days (sLP7) post cell encapsulation, and a mature LP model (mLP) with a stiff top layer and a soft bottom layer. Installation of additional HA crosslinks restricts cell spreading. Compared to the nLP controls, sLP7 conditions upregulate the expression of fibrous matrix proteins (Col I, DCN, and FN EDA), classic fibroblastic markers (TNC, FAP, and FSP1), and matrix remodeling enzymes (MMP2, TIMP1, and HAS3). Day 7 stiffening also upregulates the catabolic activities, enhances ECM turnover, and promotes YAP expression. Overall, in situ delayed matrix stiffening promotes a fibroblast transition from MSCs and enhances YAP-regulated mechanosensing.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Recém-Nascido , Hidrogéis/metabolismo , Prega Vocal/metabolismo , Fibroblastos , Ácido Hialurônico/metabolismo
4.
Biomater Sci ; 10(19): 5689-5706, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36018297

RESUMO

The pulmonary fibrotic microenvironment is characterized by increased stiffness of lung tissue and enhanced secretion of profibrotic soluble cues contributing to a feedback loop that leads to dysregulated wound healing and lung failure. Pinpointing the individual and tandem effects of profibrotic stimuli in impairing immune cell response remains difficult and is needed for improved therapeutic strategies. We utilized a statistical design of experiment (DOE) to investigate how microenvironment stiffness and interleukin 13 (IL13), a profibrotic soluble factor linked with disease severity, contribute to the impaired macrophage response commonly observed in pulmonary fibrosis. We used engineered bioinspired hydrogels of different stiffness, ranging from healthy to fibrotic lung tissue, and cultured murine alveolar macrophages (MH-S cells) with or without IL13 to quantify cell response and analyze independent and synergistic effects. We found that, while both stiffness and IL13 independently influence macrophage morphology, phenotype, phagocytosis and efferocytosis, these factors work synergistically to exacerbate impaired macrophage phenotype and efferocytosis. These unique findings provide insights into how macrophages in fibrotic conditions are not as effective in clearing debris, contributing to fibrosis initiation/progression, and more broadly inform how underlying drivers of fibrosis modulate immune cell response to facilitate therapeutic strategies.


Assuntos
Macrófagos Alveolares , Fibrose Pulmonar , Animais , Fibrose , Hidrogéis/uso terapêutico , Interleucina-13/uso terapêutico , Macrófagos Alveolares/patologia , Camundongos , Fenótipo , Fibrose Pulmonar/induzido quimicamente
5.
Biomacromolecules ; 23(7): 3017-3030, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35737940

RESUMO

Crosslinked, degradable, and cell-adhesive hydrogel microfibers were synthesized via interfacial polymerization employing tetrazine ligation, an exceptionally fast bioorthogonal reaction between strained trans-cyclooctene (TCO) and s-tetrazine (Tz). A hydrophobic trisTCO crosslinker and homo-difunctional poly(ethylene glycol) (PEG)-based macromers with the tetrazine group conjugated to PEG via a stable carbamate (PEG-bisTz1) bond or a labile hydrazone (PEG-bisTz2) linkage were synthesized. After laying an ethyl acetate solution of trisTCO over an aqueous solution of bisTz macromers, mechanically robust microfibers were continuously pulled from the oil-water interface. The resultant microfibers exhibited comparable mechanical and thermal properties but different aqueous stability. Combining PEG-bisTz2 and PEG-bisTz3 with a dangling arginine-glycine-aspartic acid (RGD) peptide in the aqueous phase yielded degradable fibers that supported the attachment and growth of primary vocal fold fibroblasts. The degradable and cell-adhesive hydrogel microfibers are expected to find utility in a wide array of tissue engineering applications.


Assuntos
Compostos Heterocíclicos , Hidrogéis , Fibroblastos , Hidrogéis/química , Polietilenoglicóis/química , Polimerização , Engenharia Tecidual
6.
Acta Biomater ; 138: 375-389, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34728427

RESUMO

Healthy articular cartilage supports load bearing and frictional properties unmatched among biological tissues and man-made bearing materials. Balancing fluid exudation and recovery under loaded and articulated conditions is essential to the tissue's biological and mechanical longevity. Our prior tribological investigations, which leveraged the convergent stationary contact area (cSCA) configuration, revealed that sliding alone can modulate cartilage interstitial fluid pressurization and the recovery and maintenance of lubrication under load through a mechanism termed 'tribological rehydration.' Our recent comparative assessment of tribological rehydration revealed remarkably consistent sliding speed-dependent fluid recovery and lubrication behaviors across femoral condyle cartilage from five mammalian species (equine/horse, bovine/cow, porcine/pig, ovine/sheep, and caprine/goat). In the present study, we identified and characterized key predictive relationships among tissue properties, sliding-induced tribological rehydration, and the modulation/recovery of lubrication within healthy articular cartilage. Using correlational analysis, we linked observed speed-dependent tribological rehydration behaviors to cartilage's geometry and biphasic properties (tensile and compressive moduli, and permeability). Together, these findings demonstrate that easily measurable biphasic tissue characteristics (e.g., bulk tissue material properties, compressive strain magnitude, and strain rates) can be used to predict cartilage's rehydration and lubricating abilities, and ultimately its function in vivo. STATEMENT OF SIGNIFICANCE: In healthy cartilage, articulation recovers fluid lost to static loading thereby sustaining tissue lubricity. Osteoarthritis causes changes to cartilage composition, stiffness, and permeability associated with faster fluid exudation and presumably poorer frictional outcomes. Yet, the relationship between mechanical properties and fluid recovery during articulation/sliding remains unclear. Through innovative, high-speed benchtop sliding and indentation experiments, we found that cartilage's tissue properties regulate its exudation/hydration under slow sliding speeds but have minimal effect at high sliding speeds. In fact, cartilage rehydration appears insensitive to permeability and stiffness under high fluid load support conditions. This new understanding of the balance of cartilage exudation and rehydration during activity, based upon comparative tribology studies, may improve prevention and rehabilitation strategies for joint injuries and osteoarthritis.


Assuntos
Cartilagem Articular , Cabras , Animais , Bovinos , Hidratação , Fricção , Cavalos , Lubrificação , Ovinos , Estresse Mecânico , Suínos
7.
Cell Mol Bioeng ; 14(4): 349-363, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34295444

RESUMO

In vivo, articular cartilage is exceptionally resistant to wear, damage, and dysfunction. However, replicating cartilage's phenomenal in vivo tribomechanics (i.e., high fluid load support, low frictions and strains) and mechanobiology on the benchtop has been difficult, because classical testing approaches tend to minimize hydrodynamic contributors to tissue function. Our convergent stationary contact area (cSCA) configuration retains the ability for hydrodynamically-mediated processes to contribute to interstitial hydration recovery and tribomechanical function via 'tribological rehydration'. Using the cSCA, we investigated how in situ chondrocyte survival is impacted by the presence of tribological rehydration during the reciprocal sliding of a glass counterface against a compressively loaded equine cSCA cartilage explant. When tribological rehydration was compromised during testing, by slow-speed sliding, 'pathophysiological' tribomechanical environments and high surface cell death were observed. When tribological rehydration was preserved, by high-speed sliding, 'semi-physiological' sliding environments and suppressed cell death were realized. Inclusion of synovial fluid during testing fostered 'truly physiological' sliding outcomes consistent with the in vivo environment but had limited influence on cell death compared to high-speed sliding in PBS. Subsequently, path analysis identified friction as a primary driver of cell death, with strain an indirect driver, supporting the contention that articulation mediated rehydration can benefit both the biomechanical properties and biological homeostasis of cartilage. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00671-2.

8.
Biotribology (Oxf) ; 252021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37780679

RESUMO

Articular cartilage is a robust tissue that facilitates load distribution and wear-free articulation in diarthrodial joints. These biomechanical capabilities are fundamentally tied to tissue hydration, whereby high interstitial fluid pressures and fluid load support facilitate the maintenance of low tissue strains and frictions. Our recent ex vivo studies of cartilage sliding biomechanics using the convergent stationary contact area (cSCA) configuration, first introduced by Dowson and colleagues, unexpectedly demonstrated that sliding alone can promote recovery of interstitial pressure and lubrication lost to static compression through a mechanism termed 'tribological rehydration.' Although exclusively examined in bovine stifle cartilage to date, we hypothesized that tribological rehydration, i.e., the ability to recover/modulate tissue strains and lubrication through sliding, is a universal behavior of articular cartilage. This study aimed to establish if, and to what extent, sliding-induced tribological rehydration is conserved in articular cartilage across a number of preclinical animal species/models and diarthrodial joints. Using a comparative approach, we found that articular cartilage from equine, bovine, ovine, and caprine stifles, and porcine stifle, hip, and tarsal joints all exhibited remarkably consistent sliding speed-dependent compression/strain recovery and lubrication behaviors under matched contact stresses (0.25 MPa). All cartilage specimens tested supported robust, tribological rehydration during high-speed sliding (>30 mm/s), which as a result of competitive recovery of interstitial lubrication, promoted remarkable decreases in kinetic friction during continuous sliding. The conservation of tribological rehydration across mammalian quadruped articular cartilage suggests that sliding-induced recovery of interstitial hydration represents an important tissue adaptation and largely understudied contributor to the biomechanics of cartilage and joints.

9.
Connect Tissue Res ; 61(3-4): 375-388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910694

RESUMO

Purpose/Aim: Epidemiological evidence suggests, contrary to popular mythos, that increased exercise/joint activity does not place articular cartilage at increased risk of disease, but instead promotes joint health. One explanation for this might be activity-induced cartilage rehydration; where joint articulation drives restoration of tissue hydration, thickness, and dependent tribomechanical outcomes (e.g., load support, stiffness, and lubricity) lost to joint loading. However, there have been no studies investigating how patterning of intermittent articulation influences the hydration and biomechanical functions of cartilage.Materials and Methods: Here we leveraged the convergent stationary contact area (cSCA) testing configuration and its unique ability to drive tribological rehydration, to elucidate how intermittency of activity affects the biomechanical functions of bovine stifle cartilage under well-controlled sliding conditions that have been designed to model a typical "day" of human joint activity.Results: For a fixed volume of "daily" activity (30 min) and sedentary time (60 min), breaking up intermittent activity into longer and less-frequent bouts (corresponding to longer continuous sedentary periods) resulted in the exposure of articular cartilage to markedly greater strains, losses of interstitial pressure, and friction coefficients.Conclusions: These results demonstrated that the regularity of ex vivo activity regimens, specifically the duration of sedentary bouts, had a dominant effect on the biomechanical functions of articular cartilage. In more practical terms, the results suggest that brief but regular movement patterns (e.g., every hour) may be biomechanically preferred to long and infrequent movement patterns (e.g., a long walk after a sedentary day) when controlling for daily activity volume (e.g., 30 min).


Assuntos
Cartilagem Articular , Fricção , Estresse Mecânico , Líquido Sinovial/metabolismo , Animais , Fenômenos Biomecânicos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Bovinos , Humanos , Lubrificação
10.
J Mech Behav Biomed Mater ; 101: 103422, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527014

RESUMO

Healthy articular cartilage is crucial to joint function, as it provides the low friction and load bearing surface necessary for joint articulation. Nonetheless, joint injury places patients at increased risk of experiencing both accelerated cartilage degeneration and wear, and joint dysfunction due to post-traumatic osteoarthritis (PTOA). In this study, we used our ex vivo convergent stationary contact area (cSCA) explant testing configuration to demonstrate that high-speed sliding of healthy tissues against glass could drive consistent and reproducible recovery of compression-induced cartilage deformation, through the mechanism of 'tribological rehydration'. In contrast, the presence of physical cartilage damage, mimicking those injuries known to precipitate PTOA, could compromise tribological rehydration and the sliding-driven recovery of cartilage function. Full-thickness cartilage injuries (i.e. fissures and chondral defects) markedly suppressed sliding-driven tribological rehydration. In contrast, impaction to cartilage, which caused surface associated damage, had little effect on the immediate tribomechanical response of explants to sliding (deformation/strain, tribological rehydration, and friction/lubricity). By leveraging the unique ability of the cSCA configuration to support tribological rehydration, this study permitted the first direct ex vivo investigation of injury-dependent strain and friction outcomes in cartilage under testing conditions that replicate and maintain physiologically-relevant levels of fluid load support and frictional outcomes under high sliding speeds (80 mm/s) and moderate compressive stresses (~0.3 MPa). Understanding how injury alters cartilage tribomechanics during sliding sheds light on mechanisms by which cartilage's long-term resilience and low frictional properties are maintained, and can guide studies investigating the functional consequences of physical injury and joint articulation on cartilage health, disease, and rehabilitation.


Assuntos
Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Cartilagem Articular/fisiopatologia , Bovinos , Força Compressiva , Fricção , Articulações/lesões , Estresse Mecânico
11.
J Mech Behav Biomed Mater ; 100: 103376, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31434033

RESUMO

Despite growing interest in the use of conducting polymer coatings such as poly(3,4-ethylenedioxythiophene) (PEDOT) in bioelectronics, their relatively poor mechanical durability on inorganic substrates has limited long-term and clinical applications. Efforts to enhance durability have been limited by the lack of quantifiable metrics that can be used to evaluate the polymer film integrity and associated device failure. Here we examine the hypothesis that film failure under the tribological and cyclic electrical stressing becomes substantially less likely when the interfacial shear strength (τi) exceeds the shear strength of the film (τf). In this paper, we: (1) develop a simple yet robust method to quantify the relative shear strength (τi/τf); (2) quantify the effect of substrate and surface treatment on the relative shear strength of PEDOT; (3) relate changes in relative shear strength to resistance to interface failure under cyclic electrical and tribological testing. Treating a stainless-steel substrate with an adhesion promoter increased τi/τf from 0.18 to 0.69 compared to untreated controls. On untreated gold, the τi/τf of PEDOT increased to 1.46. Whereas both cyclic electrical and tribological testing quickly and severely damaged the interface of PEDOT when τi/τf < 1, neither stimulus had any quantifiable effect on delamination when τi/τf > 1.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Metais/química , Polímeros/química , Animais , Adesão Celular , Eletrônica , Ouro/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Resistência ao Cisalhamento , Aço Inoxidável , Estresse Mecânico , Especificidade por Substrato , Propriedades de Superfície , Suínos , Resistência à Tração
12.
ACS Appl Mater Interfaces ; 11(18): 16402-16411, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30998317

RESUMO

Fully integrated hydrogel channels were fabricated via interfacial bioorthogonal cross-linking, a diffusion-controlled method for the creation and patterning of synthetic matrices based on the rapid bioorthogonal reaction between s-tetrazines (Tz) and trans-cyclooctene (TCO) dienophiles. Injecting an aqueous solution of a bisTCO cross-linker into a reservoir of tetrazine-modified hyaluronic acid (HA-Tz), while simultaneously drawing the syringe needle through the reservoir, yielded a cross-linked hydrogel channel that was mechanically robust. Fluorescent tags and biochemical signals were spatially patterned into the channel wall through time-dependent perfusion of TCO-conjugated molecules into the lumen of the channel. Different cell populations were spatially encapsulated in the channel wall via temporal alteration of cells in the HA-Tz reservoir. The interfacial approach enabled the spatial patterning of vascular cells, including human abdominal aorta endothelial cells, aortic vascular smooth muscle cells, and aortic adventitial fibroblasts, into the hydrogel channels with high viability and proper morphology in the anatomical order found in human arteries. The bioorthogonal platform does not rely on external triggers and represents the first step toward the engineering of functional and implantable arteries.


Assuntos
Aorta Abdominal/crescimento & desenvolvimento , Células Endoteliais/efeitos dos fármacos , Hidrogéis/farmacologia , Músculo Liso Vascular/crescimento & desenvolvimento , Aorta/efeitos dos fármacos , Aorta/crescimento & desenvolvimento , Aorta Abdominal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Ciclo-Octanos/química , Células Endoteliais/patologia , Fibroblastos/efeitos dos fármacos , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Músculo Liso Vascular/efeitos dos fármacos , Tetrazóis/química , Engenharia Tecidual/tendências
13.
J Orthop Res ; 36(12): 3256-3267, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30183098

RESUMO

Osteoarthritis is a chronic joint disease characterized by articular cartilage degeneration, pain, and disability. As an avascular tissue, the movement of water and solutes through the tissue is critical to cartilage health and function, and early changes in solute diffusivity due to micro-scale changes in the properties of cartilage's extracellular matrix might precede clinical symptoms. A diagnostic technique for quantifying alteration to the diffusive environment of cartilage that precedes macroscopic changes may allow for the earlier identification of osteoarthritic disease, facilitating earlier intervention strategies. Toward this end, we used two confocal microscopy-based correlation spectroscopy techniques, fluorescence correlation spectroscopy and raster image correlation spectroscopy, to quantify the diffusion of two small solutes, fluorescein and 3k dextran, within human osteoarthritic articular cartilage. Our goal was to determine if these relatively simple optical correlation spectroscopy techniques could detect changes in solute diffusivity associated with increasing cartilage damage as assessed by International Cartilage Repair Society scoring guidelines, and if these measures are correlated with mechanical and compositional measures of cartilage health. Our data show a modest, yet significant increase in solute diffusivity and cartilage permeability with increasing osteoarthritis score (grades 0-2), with a strong correlation between diffusion coefficients, permeability, and cartilage composition. The described correlation spectroscopy techniques are quick, simple, and easily adapted to existing laboratory workflow and equipment. Furthermore, the minimal solute concentrations and laser powers required for analysis, combined with recent advances in arthroscopic microscopy, suggest correlation spectroscopy techniques as translational candidates for development into early OA diagnosis tools. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3256-3267, 2018.


Assuntos
Cartilagem Articular/química , Fêmur/química , Osteoartrite/diagnóstico , Análise Espectral/métodos , Fenômenos Biomecânicos , Difusão , Humanos , Osteoartrite/metabolismo
14.
Biomaterials ; 180: 24-35, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30014964

RESUMO

Fibrous proteins found in the natural extracellular matrix (ECM) function as host substrates for migration and growth of endogenous cells during wound healing and tissue repair processes. Although various fibrous scaffolds have been developed to recapitulate the microstructures of the native ECM, facile synthesis of hydrogel microfibers that are mechanically robust and biologically active have been elusive. Described herein is the use of interfacial bioorthogonal polymerization to create hydrogel-based microfibrous scaffolds via tetrazine ligation. Combination of a trifunctional strained trans-cyclooctene monomer and a difunctional s-tetrazine monomer at the oil-water interface led to the formation of microfibers that were stable under cell culture conditions. The bioorthogonal nature of the synthesis allows for direct incorporation of tetrazine-conjugated peptides or proteins with site-selectively, genetically encoded tetrazines. The microfibers provide physical guidance and biochemical signals to promote the attachment, division and migration of fibroblasts. Mechanistic investigations revealed that fiber-guided cell migration was both F-actin and microtubule-dependent, confirming contact guidance by the microfibers. Prolonged culture of fibroblasts in the presence of an isolated microfiber resulted in the formation of a multilayered cell sheet wrapping around the fiber core. A fibrous mesh provided a 3D template to promote cell infiltration and tissue-like growth. Overall, the bioorthogonal approach led to the straightforward synthesis of crosslinked hydrogel microfibers that can potentially be used as instructive materials for tissue repair and regeneration.


Assuntos
Hidrogéis/química , Animais , Técnicas de Cultura de Células , Movimento Celular/fisiologia , Fibroblastos/citologia , Humanos , Peptídeos/química , Polimerização , Proteínas/química , Tecidos Suporte/química , Cicatrização/fisiologia
15.
J Biomech ; 71: 271-276, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29454544

RESUMO

The interstitial fluid within articular cartilage shields the matrix from mechanical stresses, reduces friction and wear, enables biochemical processes, and transports solutes into and out of the avascular extracellular matrix. The balanced competition between fluid exudation and recovery under load is thus critical to the mechanical and biological functions of the tissue. We recently discovered that sliding alone can induce rapid solute transport into buried cartilage contact areas via a phenomenon termed tribological rehydration. In this study, we use in situ confocal microscopy measurements to track the spatiotemporal propagation of a small neutral solute into the buried contact area to clarify the fluid mechanics underlying the tribological rehydration phenomenon. Sliding experiments were interrupted by periodic static loading to enable scanning of the entire contact area. Spatiotemporal patterns of solute transport combined with tribological data suggested pressure driven flow through the extracellular matrix from the contact periphery rather than into the surface via a fluid film. Interestingly, these testing interruptions also revealed dynamic, repeatable and history-independent fluid loss and recovery processes consistent with those observed in vivo. Unlike the migrating contact area, which preserves hydration by moving faster than interstitial fluid can flow, our results demonstrate that the stationary contact area can maintain and actively recover hydration through a dynamic competition between load-induced exudation and sliding-induced recovery. The results demonstrate that sliding contributes to the recovery of fluid and solutes by cartilage within the contact area while clarifying the means by which it occurs.


Assuntos
Cartilagem Articular/fisiologia , Líquido Extracelular/fisiologia , Fricção/fisiologia , Animais , Bovinos , Pressão , Estresse Mecânico
16.
ACS Appl Mater Interfaces ; 9(39): 34480-34488, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28945331

RESUMO

We employed a systematic processing approach to control phase separation in polymer blend thin films and significantly reduce dynamic friction coefficients (µ)s. We leveraged this modulation of phase separation to generate composite surfaces with dynamic friction coefficients that were substantially lower than expected on the basis of simple mixing rules, and in several cases, these friction coefficients were lower than those of both pure components. Using a model polyisoprene [PI]/polystyrene [PS] composite system, a minimum µ was found in films with PS mass fractions between 0.60 and 0.80 (µblend = 0.11 ± 0.03); that value was significantly lower than the friction coefficient of PS (µPS = 0.52 ± 0.01) or PI (µPI = 1.3 ± 0.09) homopolymers and was comparable to the friction coefficient of poly(tetrafluoroethylene) [PTFE] (µPTFE = 0.09 ± 0.01) measured under similar conditions. Additionally, through experiments in which the domain size was systematically varied at constant composition (through an annealing process), we demonstrated that µ decreased with decreasing characteristic domain size. Thus, the tribological synergy between PS and PI domains (discrete size, physical domain isolation, and overall film composition) was shown to play an integral role in the friction and wear of these PS/PI composites. Overall, our results suggest that even high friction polymers can be used to create low friction polymer blends by following appropriate design rules and demonstrate that engineering microstructure is critical for controlling the friction and adhesion properties of composite films for tribologically relevant coatings.

17.
Ann Biomed Eng ; 43(11): 2652-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25893511

RESUMO

In temporomandibular joints (TMJs), the cartilage on the condylar head displays a unique ultrastructure with a dense layer of type I collagen in the superficial zone, different from hyaline cartilage in other joints. This study aims to elucidate the roles of this fibrous zone in the mechanical behaviors, particularly lubrication, of TMJ under physiological loading regimes. Mechanical tests on porcine condylar cartilage demonstrated that the superficial and middle-deep zones exhibit tension-compression nonlinearity. The tensile and compressive moduli of the superficial zone are 30.73 ± 12.97 and 0.028 ± 0.016 MPa, respectively, while those for the middle-deep zone are 2.43 ± 1.75 and 0.14 ± 0.09 MPa. A nonlinear finite element model of condylar cartilage was built to simulate sliding of a spherical probe over the articular surface. The presence of the superficial zone significantly promoted interstitial fluid pressurization (IFP) inside the loaded cartilage and reduced the friction force on the surface, compared to the case without the superficial zone. Finite element simulations showed that IFP depends on sliding speed but not normal load, which matches the experimental results. This study revealed the presence of the fibrous zone can significantly reduce the deformation of condylar cartilage under compression and the friction force on its surface during sliding.


Assuntos
Cartilagem Articular/fisiologia , Articulação Temporomandibular/fisiologia , Animais , Colágeno Tipo I , Força Compressiva , Feminino , Fricção , Masculino , Estresse Mecânico , Suínos , Resistência à Tração
18.
Bone ; 51(2): 232-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22449445

RESUMO

The menisci are known to play important roles in normal joint function and the development of diseases such as osteoarthritis. However, our understanding of meniscus' load bearing and lubrication properties at the tissue level remains limited. The objective of this investigation was to characterize the site- and rate-dependency of the compressive and frictional responses of the meniscus under a spherical contact load. Using a custom testing device, indentation tests with rates of 1, 10, 25, 50, and 100µm/s were performed on bovine medial meniscus explants, which were harvested from five locations including the femoral apposing surface at the anterior, central, and posterior locations and the central portion at the deep layer and at the tibial apposing surface (n=5 per location). Sliding tests with rates of 0.05, 0.25, 1, and 5mm/s were performed on the central femoral aspect and central tibial aspect superficial samples (n=6 per location). A separate set of superficial samples were subjected to papain digestion and tested prior to and post treatment. Our findings are: i) the Hertz contact model can be used to fit the force responses of meniscus under the conditions tested; ii) the anterior region is significantly stiffer than the posterior region and tissue modulus does not vary with tissue depth at the central region; iii) the friction coefficient of the meniscus is on the order of 0.02 under migratory contacts and the femoral apposing surface tends to show lower friction than the tibial apposing surface; iv) the meniscus exhibits increased modulus and lubrication with increased indentation and sliding rates; v) matrix degradation impedes the functional load support and lubrication properties of the tissue. The site- and rate-dependent properties of the meniscus may be attributed to spatial variations of the tissue's biphasic structure. These properties substantiate the role of the meniscus as one of the important bearing surfaces of the knee. These data contribute to an improved understanding of meniscus function, and its role in degenerative joint diseases. In addition, the results provide functional metrics for developing engineered tissue replacements. This article is part of a Special Issue entitled Osteoarthritis.


Assuntos
Fricção/fisiologia , Meniscos Tibiais/fisiologia , Análise de Variância , Animais , Fenômenos Biomecânicos/fisiologia , Bovinos , Colágeno/metabolismo , Módulo de Elasticidade/fisiologia , Fêmur/fisiologia , Técnicas In Vitro , Modelos Biológicos , Papaína/metabolismo , Proteoglicanas/metabolismo , Líquido Sinovial/fisiologia , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...